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Optimal Ascertainment Strategies to Detect Linkage
to Common Disease Alleles

To the Editor:
The genetic dissection of complex diseases is of great
current interest. The complexity of the task has led to
serious discussion regarding competing strategies for
data collection and analysis. In a previous issue of the
Journal, Badner et al. (1998) contended that extended
densely affected pedigrees (multiplex pedigrees with
many affected individuals) are of little benefit for detec-
tion of linkage to complex traits such as bipolar disorder
(a common psychiatric disorder of complex etiology).
They state that such pedigrees are no more powerful
than nuclear families when the susceptibility allele is
common, and there may be loss of power in the collec-
tion of pedigrees with many affected individuals. Hence,
they voice concern over pedigrees collected by others for
linkage analysis of bipolar disorder (Egeland et al. 1987;
Baron et al. 1994). However, there is merit to a broader
perspective on this important problem.
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Badner et al. (1998) simulate single-locus, additive,
and multiplicative models with six types of pedigree
structures, including nuclear families with affected sibs,
pedigrees with first- or second-cousin affected sibs, and
pedigrees with an affected first- or second-cousin pair.
However, the family structures in the study by Badner
et al. (1998) bear little resemblance to the pedigree series
they find objectionable (i.e., Egeland et al. 1987; Baron
et al. 1994). In particular, unlike the studies they cite,
the families used by Badner et al. (1998) in their sim-
ulation study are not particularly large, with no direct
evidence of vertical transmission (there are only a few
affected individuals in these pedigrees, and only in the
bottom generations). In addition, only the last two gen-
erations are assumed to be genotyped. Also, it is far from
clear whether their simulations apply equally well to
pedigree data with disparate ascertainment and popu-
lation structure. For example, the data of Egeland et al.
(1987) are based on very large interrelated pedigree
structures obtained from a population isolate with a
small number of founders (the Old Order Amish). In
contrast, the Baron et al. (1994) pedigrees are smaller
and derive from a general outbred population.

Second, Badner et al. (1998) determined a priori who
were affected (that is, the pedigree structures were fixed)
and then selected the genetic models and analyzed the
pedigree data under a specified model, which may well
have been incorrect. In so doing, they may have reached
a foregone conclusion. A more appropriate approach
would be to select a model and simulate a population
to decide what pedigree structures appear and with what
frequency. This would allow a reasonable correspon-
dence between simulated mode of inheritance and the
pedigree structures ascertained.

Third, Badner et al. (1998) doubt the utility of par-
ametric methods for complex traits: “These [extended
large pedigrees] may not be the best family structures
for detection of linkage for a complex trait especially
when parametric methods are used” (p. 880). However,
the basis for this assertion is unclear, because the inves-
tigators confined their simulations to nonparametric sib
pair and pedigree-analysis methods, to the exclusion of
parametric analysis. Moreover, most of the putative link-
ages of current interest for bipolar disorder were de-
tected in extended, densely affected pedigrees with par-
ametric methods in inbred (Pekkarinen et al. 1995;
Freimer et al. 1996; Barden et al. 1998) as well as out-
bred (Straub et al. 1994; Blackwood et al. 1996; Kelsoe
et al. 1998; Aita et al. 1999) populations. Although fur-
ther work is needed to evaluate these findings, these
preliminary results attest to the potential utility of the
extended pedigree approach in complex disorders.

Fourth, these researchers’ own linkage studies of bi-
polar disorder (Berrettini et al. 1991) rest with extended
pedigrees. Many of their pedigrees are similar, in size

and illness density, to pedigrees described in the studies
they criticize (e.g., Baron et al. 1994). With an average
of 17 informative persons per pedigree (Berrettini et al.
1991), these pedigrees are substantially larger than nu-
clear families. Curiously, they make no mention of their
own pedigree series while voicing concern about studies
reported by others. Also, there is an apparent inconsis-
tency between the conclusion drawn by Badner et al.
(1998) from their simulations and their treatment of
their own (real, not simulated) data—in particular, their
recent claim of linkage between bipolar disorder and
chromosome 18 pericentromeric markers, which was
based on nonparametric analysis (sib pair and af-
fected–pedigree-member methods) of extended densely
affected pedigrees (Berrettini et al. 1997). Although this
finding is not generally accepted (Baron 1997; Rice
1997; Knowles et al. 1998), the investigators tout it a
confirmed finding (Berrettini et al. 1997), an apparent
contradiction of their doubts about the utility of the
extended pedigree strategy. Moreover, with nonpara-
metric analysis of their extended pedigrees, Detera-Wad-
leigh et al. (1996) replicated our linkage finding for bi-
polar disorder and chromosome 21q22.3; both the
original report of this linkage (Straub et al. 1994) and
a subsequent supportive analysis (Aita et al. 1999) were
based on parametric analysis of the Baron et al. (1994)
pedigrees. This illustrates the potential utility of conflu-
ent analytic approaches for complex traits in extended
multiplex pedigrees.

There is an ongoing debate as to the optimal study
design and methods of analysis for complex traits (Vie-
land et al. 1992; Baron 1997; Greenberg et al. 1997,
1998b; Goldgar and Easton 1997; Kruglyak 1997; Ter-
williger 1998). The debate often pits analysis of nuclear
families with affected sib pairs (ASPs) against analysis
of extended high-density pedigrees, and so-called
“model-free” methods (e.g., sib-pair analysis) versus
“model-based” analysis (LOD scores in pedigrees). The
main points can be summarized as follows:

Detractors of the extended pedigree approach argue
that such pedigrees (1) incur more opportunities for in-
troducing “extraneous” genes by way of bilineal trans-
mission, increasing intrafamilial heterogeneity and lead-
ing to reduced power to detect linkage; (2) represent a
particular form of a highly familial disease with a dom-
inant-like effect, to the exclusion of other, more repre-
sentative genetic mechanisms for complex traits, such as
oligogenic transmission; (3) are best suited to detect
genes of a relatively large effect and less likely to uncover
minor genes that are likely present in a majority of cases;
and (4) are hard to come by.

There are counterarguments, however: (1) Bilineal
transmission can be screened out as part of the ascer-
tainment scheme; (2) Because “hidden” bilineality can
escape detection, two-trait–locus models allowing for
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more than one disease locus in the pedigree can be ap-
plied to bilineal pedigrees, with sufficient linkage infor-
mation to warrant their inclusion (Schork et al. 1993);
also, there are methods to analyze extended pedigrees
subdivided into all component nuclear families, to ac-
count for intrafamilial heterogeneity (e.g., J. D. Terwil-
liger’s ANALYZE computer program); (3) Small families
and sib pairs are not impervious to heterogeneity: phe-
nocopies may be common because of low illness density;
(4) Extended pedigrees can contain more genetic infor-
mation than smaller families and can have higher sta-
tistical power, especially when heterogeneity is ac-
counted for; (5) The dominant, “single-gene”
appearance in many extended pedigrees may, indeed,
favor the detection of genes of a relatively large effect;
this, however, is not necessarily a drawback, because
such genes can be more easily tractable and may have
greater biological importance than minor genes, at least
in some cases; (6) As mentioned above, many of the
putative linkages of current interest for bipolar disorder
were detected in extended pedigrees; and (7) Undoubt-
edly, ASPs are more readily available than extended ped-
igrees, but advocates of the extended pedigree strategy
argue that “rigorous science” is preferable to “conven-
ient science.”

Champions of “model-free” methods contend that
these methods (1) are more suitable for complex dis-
orders for which the mode of inheritance is uncertain,
because, unlike model-based methods, they are not de-
pendent on particular genetic parameters; (2) are less
susceptible to multiple test effects leading to type I error,
unlike model-based methods that tend to use several
models; and (3) might also be preferable for analysis of
bipolar disorder, because their utility has already been
demonstrated in several complex traits (e.g., diabetes
mellitus type I).

But proponents of model-based methods argue that
(1) LOD score analysis in pedigrees generally has greater
power and is reasonably robust to model misspecifica-
tion, provided more than one plausible model is tested;
(2) The critical factor in LOD score analysis is the mode
of inheritance at the linked locus, not that of the complex
trait per se (Greenberg et al. 1998a); (3) “Model-free
analysis” is not truly model-free and is sometimes sta-
tistically equivalent to parametric analysis (Whittemore
1996); (4) With LOD score analysis, there is the option
of using several different genetic models, thus covering
a range of inheritance patterns with adequate power and
little danger of missing a true linkage (such an op-
tion—i.e., a range of models—is not available for ASP
analysis); and (5) There are no systematic studies sup-
porting the assertion that model-free methods could de-
tect linkage that LOD score analysis would miss.

As aptly put by Suarez et al. (1994), who conducted
their own simulations for linkage detection in complex

traits, “a simulation could so oversimplify a complex
reality as to be misleading” (p. 36). Although some sim-
ulations can furnish useful guidelines, the computation-
ally intensive nature of such studies and the complexities
of the disorders being considered are inherent limita-
tions. Clearly, there is no one correct strategy for linkage
detection in complex traits such as bipolar disorder.
Complementary approaches must be considered, includ-
ing nuclear families with ASPs, extended pedigrees, and
model-based and model-free methods of analysis. When
genotypic information is available for several genera-
tions, extended pedigrees with vertical transmission may
prove propitious for detection of linkage to complex
traits.

MIRON BARON

Department of Psychiatry
and Columbia Genome Center
Columbia University, New York
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Reply to Baron

To the Editor:
Baron (1999 [in this issue]) criticizes our recent report
on ascertainment strategies to detect susceptibility alleles
of differing frequencies (Badner et al. 1998). In that re-
port, we showed that, when the susceptibility allele fre-
quency was rare, extended pedigrees had greater power
to detect linkage than did nuclear families. However,
when the susceptibility allele frequency was common,
extended pedigrees were no more powerful than nuclear
families, and the relatively densely affected pedigrees we
simulated had a loss of power, probably secondary to
increased homozygosity in the parents. This was true for
the single-locus and the two-locus additive and multi-
plicative models that we simulated. Therefore, we con-
cluded that, for rare susceptibility alleles, extended ped-
igrees had greater power to detect linkage. However, for
common susceptibility alleles, nuclear families were at
least as powerful as extended pedigrees and, because of
the greater ease of ascertainment and full genotyping,
were preferable to collect.

Baron’s arguments are that (1) Extended pedigrees are
valuable, and we claimed that they are not, (2) We sim-
ulated pedigrees that do not correspond to the real
world, (3) Parametric analytical methods are valid, and
we claimed they are not, and (4) Previous publications
by our group are inconsistent with the 1998 report.
None of these arguments have merit. Baron has also
made criticisms about previous findings of our group
that were not mentioned in our 1998 report.

Value of Extended Pedigrees in Complex Genetic Dis-
orders.—Traditionally, extended pedigrees were under-
stood to be best, always, for finding linkage to illness.
We demonstrate that this is not true when the suscep-
tibility allele is common. However, we do not say that
extended pedigrees are never valuable for detection of
linkage in complex genetic traits. We stated, “These
[extended large pedigrees] may not be the best family
structures for detection of linkage for a complex trait
especially when parametric methods are used” (italics
added), which means that we did not rule out the pos-
sibility that extended large pedigrees would be pow-
erful under some circumstances. Even when the allele
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